An adaptive two-level method for hypersingular integral equations in \(R^3\)

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Nitsche-based domain decomposition method for hypersingular integral equations

We introduce and analyze a Nitsche-based domain decomposition method for the solution of hypersingular integral equations. This method allows for discretizations with non-matching grids without the necessity of a Lagrangian multiplier, as opposed to the traditional mortar method. We prove its almost quasi-optimal convergence and underline the theory by a numerical experiment.

متن کامل

Hypersingular Integral Equations in Banach Spaces by the Quadrature Method

Abstract A new numerical method is introduced and investigated for the hypersingular integral equations defined in Banach spaces. The hypersingular integral equations belong to a wider class of singular integral equations having much more stronger singularities.The proposed approximation method is an extension beyond the quadrature method. Beyond the above, an error estimates theory is proposed...

متن کامل

Approximations of hypersingular integral equations by the quadrature method

A numerical method is proposed and investigated for the hypersingular integral equations defined in Banach spaces. The hypersingular integral equations belong to a wider class of singular integral equations having much more stronger singularities. The proposed approximation method is an extension beyond the quadrature method. Moreover an error estimates theory is introduced for the hypersingula...

متن کامل

Energy norm based error estimators for adaptive BEM for hypersingular integral equations

For hypersingular integral equations in 2D and 3D, we analyze easy-to-implement error estimators like (h − h/2)-based estimators, two-level estimators, and averaging on large patches and prove their equivalence. Moreover, we introduce some ZZ-type error estimators. All of these a posteriori error estimators are analyzed within the framework of localization techniques for the energy norm.

متن کامل

Explicit evaluation of hypersingular boundary integral equations for acoustic sensitivity analysis based on direct differentiation method

This paper presents a new set of boundary integral equations for three dimensional acoustic shape sensitivity analysis based on the direct differentiation method. A linear combination of the derived equations is used to avoid the fictitious eigenfrequency problem associated with the conventional boundary integral equation method when solving exterior acoustic problems. The strongly singular and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ANZIAM Journal

سال: 2000

ISSN: 1445-8810

DOI: 10.21914/anziamj.v42i0.633